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Abstract 
 
A testbed waterway model (SIMOPT) that combines simulation and optimization has 
been developed at the University of Maryland. It employs genetic algorithms to solve the 
problem of evaluating, selecting, sequencing and scheduling waterway improvement 
projects. It provides a promising demonstration of simulation-based optimization. 
 
Since the developments of simulation and optimization components are largely separable, 
this testbed model can be used to quickly test optimization improvements without 
running more detailed and longer-running simulations. The improved optimization 
models are intended to work with the next generation NaSS waterway simulation model 
which is developed under the NETS program of the Corps of Engineers. As a testbed, 
SIMOPT is modified here to consider project construction time and capacity reductions 
during construction, avoid duplicate evaluations and consider mutually exclusive projects 
at any locks.  

Introduction 
 
A problem of great concern to the U. S. Army Corps of Engineers (USACE) is the 
selection, sequencing and scheduling of the waterway improvement projects, which 
include chamber construction, expansion, rehabilitation, or maintenance. If numerous 
projects are considered, a massive combinatorial optimization problem results. This 
problem is very difficult to solve with conventional optimization approaches. Thus, an 
investment optimization model based on genetic search algorithms is proposed to solve 
this large and complex combinatorial problem.  
 
Solving an optimization problem requires evaluation as well as optimization. As a 
complex and probabilistic system, a waterway network can be analyzed through a 
detailed simulation model. Thus a simulation-based optimization model is explored for 
selecting and scheduling waterway projects. 
  
The following sections focus on the issues of optimization, simulation-based optimization 
modeling and project scheduling. The SIMOPT model is presented to demonstrate the 
capabilities of a simulation-based optimization model in scheduling waterway 
improvement projects. It is expected that the optimization methods developed and tested 
with SIMOPT can then be applied with the next generation NaSS waterway simulation 
model. 
 

Optimization 
 
Optimization is a mathematical process that searches for the solution which best satisfies 
a stated objective. Any optimization problem can be formulated with an objective 
function to be minimized or maximized, and subject to constraints of budgets, capacities, 
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construction times or facility closure times. Various optimization algorithms are available 
for solving different levels of optimization problems. Calculus, enumerative search, 
mathematical programming and branch and bound algorithms may be used to solve 
exactly some optimization problems which are sufficiently small or well behaved .  
Heuristic optimization methods such as simulated annealing, tabu search, genetic 
algorithms and swarm intelligence may be tried for problems that are relatively large of 
have numerous local optima. 
 
If the decision variables are discrete, the optimization problem is a combinatorial 
optimization problem, whose optimal solution is found from the enumeration, 
combination and permutation of several discrete elements. Since it is practically very 
hard to identify the global optimum as number of decision variables becomes large, rather 
than finding the perfect “optimum solution”, we seek a very good  (or “near-optimal”) 
solution. In solving a complex optimization problem, the objective function must be 
repeatedly evaluated. This function might be computed or estimated with a simple 
equation, a queuing model, and other methods. If the system analyzed is complex enough 
and subject to probabilistic variations, it is difficult to evaluate it or its objective function 
without a detailed simulation model. 
 

Simulation-Based Optimization Model 
 
For years, there has been considerable interest in combining simulation and optimization 
models. With a number of controllable decision variables and an objective function to be 
maximized or minimized, the optimization model runs the simulation model and 
eventually determines a combination of the decision variables that produces an optimal or 
near optimal solution. 
 
A simulation model is commonly used for complex probabilistic systems. Since those 
systems are hard to evaluate analytically, the objective function is not fully specifiable. 
There are several advantages of applying simulation models: 

• System performance can be estimated under specified operating conditions. 
• Operations with alternative design and control characteristics can be compared. 
• Experimental scenarios can be carefully controlled. 
• Systems undergoing many changes over time can be studied. 

 
A possible simulation-based optimization model is presented in Figure 1. The 
optimization module first instructs the simulation module to simulate some initial system 
configurations, i.e. combinations of decision variables for the system. The simulation 
model evaluates and computes the objective function for each analyzed configuration. 
Based on the above results, the optimization model selects new combinations of decision 
variables to be simulated, until further improvements become insignificant. That is, the 
outputs from these simulations are fed back into the optimization module, which then 
uses its built-in search algorithm to generate additional configurations to simulate, etc. 
The whole process is continued, while insuring that all constraints are satisfied, till the 
termination rule in the optimization module is reached. 
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Figure 1 Interaction between Simulation and Optimization 
 
However, although the operational steps are indeed workable, it is important to note that 
the results are not absolutely guaranteed to be optimal. The optimization results depend 
on how the options, parameters, and tolerances are specified. A good optimization model 
can efficiently reach a near-optimal configuration. The difference between the global 
optimum and the near optimal solution is usually insignificant in practice, considering the 
uncertainties in inputs and in functional relations. 
 

Genetic Algorithms 
 

Characteristics 
 
An efficient optimization algorithm must satisfy two requirements in finding the global 
optimum: sufficiently explore the search space and exploit the knowledge gained at the 
previously visited points. (That search space includes the points representing the various 
combinations of decision variables.) Rooted in natural genetics and computer science, 
genetic algorithms (GAs) treat the problem as the environment, and consider a set of 
possible solutions to the problem as the population. A procedure that (somewhat) mimics 
the natural evolution is established to select individuals for reproducing offspring 
according to their “fitness” to the environment (i.e. the problem). Each individual (which 
constitutes a tentative solution to the problem) in the population is represented by a set of 
encoded genes called a chromosome. After several generations, the most adapted 
individuals will survive and have a higher chance of reproducing offspring. If the 
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algorithm is well designed, the population will converge to an optimal solution to the 
problem. 
 
There are several characteristics distinguishing GAs from other conventional 
optimization techniques. At any stage in the search GAs work with a set of solutions 
rather than one single solution. This feature enables GAs to escape from local optima in 
their multi-directional global search. Besides, no specific function (i.e. formulated 
objective function) for the mathematical expression of a given problem is required in 
GAs. Thus GAs are able to handle any kind of objective function and constraints, and are 
especially suitable when the objective function is quite noisy (i.e. with numerous local 
optima). The GA search approach is at least partially probabilistic in the way population 
members are selected for future generations and in the frequency with which various 
operators are applied. 
 

Design of GAs 
 
Figure 2 shows the basic GA procedure in optimization search process. The application 
of GAs to a specific problem includes several steps. 
 
1. Solution encoding 

Originally, a potential solution to the problem is encoded into a binary string, called a 
chromosome, of a given length which depends on the required precision. In terms of 
problem characteristics, some other ways of representing solutions are necessary, 
such as integer coding for solving combinatorial optimization problem. 

2. Initial population 
Generally, the initial population is randomly generated. If good solutions can be 
included in the initial population, the optimization time can be reduced somewhat. 

3. Fitness function 
When GAs are applied, the fitness function is the objective function to be optimized. 
The fitness value of each individual solution from a population must be evaluated. 

4. Selection 
The individuals in the population are selected to reproduce offspring according to 
their fitness value. Typically, proportional selection chooses individuals by 
calculating their relative fitness values. If necessary, scaling and ranking schemes 
provide alternatives for measuring fitness other than using raw values directly 

5. Genetic operators 
Classic GAs provide two types of genetic operators – crossover and mutation. A 
crossover operator generates the offspring from two parents by swapping their     
genes at some randomly chosen position of the chromosomes. A mutation operator 
alters (according to some rules and/or probabilities) one of more genes of one 
selected parent chromosome in order to increase the population variability. 

6. Population replacement 
Replacement creates a new population for the next generation and is strongly related 
to the selection process. Two issues arise in this phase – sampling space and sampling 
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mechanism. Along with selection, both of them have a significant influence on 
selective pressure and thereby on genetic algorithm behavior. 

7. Termination and convergence 
Usually, the genetic system is terminated through a pre-specified number of 
generations. Another termination rule could be as follows: stop the search process 
after the solution of the best sequence remains unchanged for the last m generations. 

Start

Generate initial
population

Calculate fitness value of
each individual solution

Select individuals  for
genetic operations

Create offspring

Evaluate offspring

Replace the population
(= create next generation

Is
termination rule

 met?
Stop

Yes

No

Genetic operators

Fitness function
(objective function)

Fitness function
(= objective function)

Encoding method
(solution encoding)

 
 

Figure 2 GA Procedure 
 
For the integration of waterway simulation and optimization, a genetic algorithm is 
chosen to perform the optimization search. Several steps are included in an ordinary 
genetic algorithm: 

• Step 1: Create initial population of solutions (i.e., project sequences). 
• Step 2: Evaluate those solutions (with a simulation model in this study). 
• Step 3: Select the better individual solutions for genetic refinement. 
• Step 4: Create new solutions using mutation, crossover, or other operators. 
• Step 5: Evaluate new solutions. 
• Step 6: Replace most or all previous solutions in the population. 
• Step 7: Stop if the termination rule is satisfied. Otherwise, return to step 3 
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Genetic Operators 
 
In general, there are two types of genetic operators: mutation operators and crossover 
operators. During the past decades, several operators have been proposed, widely 
discussed and served as standard operators for solving sequencing problems. Those are 
discussed below. 
 

Crossover Operators 
• Partial-Mapped Crossover (PMX) 

Legalize the offspring
(avoid redundancy)

Select substring at random

Parent 1 1

7

437256

32 1465Parent 2

44651

7

36

52 1372

Proto child 1

Proto child 2

24651

6

37

54 1372

Offspring 1

Offspring 2

 
• Order Crossover (OX) 

two random crossover points

1 437256

7 32 1465

5 137246

Parent 1

Parent 2

Offspring 1

two random crossover points

1 437256

7 32 1465

1 346572

Parent 1

Parent 2

Offspring 2

 
• Position-Based Crossover (PBX) 
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randomly selected positions

1 437256

7 32 1465

1 436257

Parent 1

Parent 2

Offspring 1

1 437256

7 32 1465

7 342561

Parent 1

Parent 2

Offspring 2

randomly selected positions
 

• Order-Based Crossover (OBX) 
randomly selected positions

1 437256

7 32 1465

7 346521

Parent 1

Parent 2

Offspring 1

1 437256

7 32 1465

1 435276

Parent 1

Parent 2

Offspring 2

randomly selected positions
 

 

Mutation Operators 
• Insertion Mutation (IM) 
• Exchange Mutation (EM) 
• Inversion Mutation (SM) 

Randomly select a substring
and then invert the substring

1 437256

1 36 4527

(c) VM

Randomly select two projects
and then swap their positions

1 437256

1 36 4572

(b) EM

Randomly select a project and
insert it into a random position

1 437256

1 36 4725

(a) IM
 

 

Project Scheduling Problems 
 
Investment planning, also known as capital budgeting, is the process of determining 
which investments or candidate projects will be funded and pursued to meet the pre-
specified objectives over a planning horizon. It includes the tasks of project evaluation, 
project selection, project sequencing and project scheduling. 
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With a constrained budget available for various investment combinations, project 
selection and sequencing is a large combinatorial optimization problem. The solution 
space increases more than exponentially with problem size, i.e., with the number of 
projects considered. Furthermore, project interdependence increases the difficulty of 
solving project scheduling problems. Project benefits and/or costs might depend on which 
other projects are implemented. Especially in transportation networks, there are traffic 
interactions between adjacent projects. Some capacity improvement projects may mostly 
shift elsewhere the bottlenecks and delays. Therefore, those interdependencies make the 
evaluation even more complex if the improvements from some projects affect the 
operations and benefits of other projects. 
 
The literature includes various methods of evaluating schedules of interdependent 
projects, such as queuing metamodels, equilibrium traffic assignment, artificial neural 
networks and microscopic simulation models. Some optimization approaches are also 
explored in previous studies, such as swapping algorithms, branch and bound algorithms, 
Lagrange relaxation, simulated annealing and genetic algorithms. 
 
If funds are limited (i.e., always insufficient for all worthwhile projects), funds should be 
used as soon as they become available to complete as soon as possible each project in a 
sequence. That is, as funds become available over time, and assuming that funding is 
never (at anytime throughout the simulated analysis period) sufficient to implement all 
justifiable projects, then, a sequence of projects uniquely determines the schedule (i.e., 
the implementation time of each project). Thus each project in the sequence is 
implemented as soon as the funding stream allows it. Hence, with a constrained budget 
over time, the optimal project sequence uniquely determines the optimal project 
schedules. Only those projects with implementation times before the end of analysis 
period are selected. The others are implicitly rejected, thus, determining the project 
selection. 
 
As shown in Figure 3, for a given project sequence, the time at which each project is 
finished can be obtained by comparing the cumulative budgets and cumulative project 
costs. Then let oi denote the ith project to be implemented in chronological order and  
denote the time at which o

o
it

i is finished. Then  can be determined by solving the 

equation , where  is the capital cost of the j

o
it

∫∑ =
=

o
iti

j
o
j dttbc

01
)( o

jc th project to be 

implemented. 
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Figure 3 Relations of Budget Flow, Cumulative Cost, Project Sequence, and Project Schedule 
 

If there are N lock improvement projects in N fixed lock locations, the project selection 
process chooses a subset of n projects from a set of N desirable projects in the most 
desirable order. Meanwhile, the project scheduling process determines the sequence for 
implementing projects as well as the timing for the selected projects. Given a sequence 
and timing of lock capacity expansions, the project evaluation process estimates the 
system performance, which is usually defined as system delay costs. The performance 
measures cannot be determined until a project portfolio is specified. When project 
interdependencies exist, any lock improvement may affect traffic characteristics at other 
locks. As a practical matter, if there were a large number N of lock improvement projects 
and only n projects will be selected due to budget constraints, the solution space for 
project selection and sequencing including all possible combinations and permutations 
would be  

∑∑
== −

=⋅
−

N

n

N

n nN
Nn

nNn
N

00 )!(
!!

)!(!
!  

 
The above equation indicates that the size of the solution space increases more than 
exponentially with the number of candidate projects N. If N is not very small, a full 
enumeration search becomes infeasible for finding the optimal combination among all 
alternative project sets. For jointly considering project selection, sequencing and 
scheduling, the solution space is even larger. Through the budget constraints, the size of 
the project sequencing problem becomes , which is smaller than that of the original 
problem, and each of the  sequence corresponds to a feasible solution. 

!n
!n

 
If the project size (or changed capacity) is lumpy rather than continuous at any project 
location, the solution space is increased by the factor of ∏=

n

i iP
1

, where Pi is the number 
of possible projects at lock i.  The project scheduling problem will then consider more 
combinations and permutations. 
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Problems of Scheduling Waterway Improvement 
Projects 
 
Scheduling waterway improvement projects is considered as a combinatorial 
optimization problem. The objective function is set to minimize the system costs or 
maximize the net benefits over a multi-year period. There may be several constraints 
regarding budgets (possibly by region or type of expense), precedence, mutually 
exclusivity, minimum improvement steps, construction times, capacities, service quality, 
and geographic distributions. It is difficult to analytically model the probabilistic features 
of a waterway system. Hence, a simulation model is adopted for evaluating the system 
with each schedule. A conceptual approach for combining simulation and optimization 
models to solve our problem is shown in Figure 4. 
 

A set of
project

sequences

A set of
project

schedules

System
Performance
Evaluation

Optimization ModelSimulation Model

Budget Flow

 
 

Figure 4 Structure of SIMOPT Problem 
 
The inputs required for this combined simulation-optimization model should be 
information on improvement projects, system network configuration and network 
relevant variables. The outputs for these two interacting modules should be performance 
measures from the simulation model and project schedule (implementation timetable of 
the selected projects) from the optimization model. 
 

Inland Waterway Simulation Model 
 
Due to the probabilistic features in waterway traffic, a microscopic, discrete-event 
simulation model is preferred to model the inland waterway operation. The purpose of 
using a waterway simulation model is to evaluate the performance of inland waterways 
with specified system characteristics, as well as analyze short-term system variability and 
control alternatives. In the long run, the system evolution can also be assessed. 
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Coding is a major aspect of building a complex simulation model. One of the most 
important features of such a system simulation model is its portability. With portability, a 
model can be easily reused for other geographic areas or networks. With different levels 
of details for different study purposes, such a simulation model could have wide 
applicability for various purposes, such as forecasting, design, control, project selection 
and scheduling, maintenance planning and scheduling, reliability analysis. 
 
Some major factors should be considered in inland waterway simulation model: 

• Probabilistic aspects of waterway traffic, lockage times, travel times, stalls, etc. 
• Demand variability 

 Demand sensitivity to service levels 
 Demand sensitivity to construction and closures 
 Demand sensitivity to improvement projects 

• Operational lock control alternatives 
 Lock control strategies 
 Chamber interference at multiple-chamber locks 
 Chamber assignment for multiple-chamber locks 

 

Integrated Waterway Simulation and Optimization 
 
The inland waterway simulation model is designed as a discrete-event simulation model. 
It includes various “network operation events”. In addition to those events in the 
simulation kernel, “project construction events” have been added to update some system 
variables during the simulation. Those project construction events come from the project 
implementation schedule whose sequence is generated by the GA. The schedule is then 
determined based on budget constraints. The project implementation schedule is then fed 
into the simulation model and evaluated by the simulation model.  The integration of 
simulation model and optimization model is shown in Figure 5. Two blocks show the two 
separate models for simulation and optimization. They are connected by the information 
they exchange about decision variables of the project implementation schedule. 
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Figure 5 Integration of Waterway Simulation and GA Optimization 
 

SIMOPT 
 
SIMOPT was developed at the University of Maryland and presented to USACE’s 
Institute for Water Resources (IWR) in a meeting on July 27-29, 2005. It serves as a 
proof of concept model that can be tested and manipulated to help identify problems that 
may arise in future when a much more complex simulation model is combined with 
optimization. As a testbed, SIMOPT can run a simulation alone or combine it with a 
genetic algorithm to optimize project scheduling. After some discussion and refinements, 
the latest version of SIMOPT was delivered to USACE in late September 2005, 
accompanied by the SIMOPT presentation file, which mainly serves as a simple user 
guide for SIMOPT.  
 

SIMOPT Model Assumptions 
 
The simplifying assumptions in the original SIMOPT include the following: 

• Simulation Model 
o Each tow maintains a constant number of barges through the entire trip, 

even if it is necessary to disassemble barges while passing through the 
locks. That is, a tow’s size is assigned when that tow is generated, and 
there is no refleeting during its trip. 
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o Each tow maintains a constant speed between its origin and destination 
ports, either upstream or downstream. 

o There is always enough equipment, such as towboats and barges, for 
waterway shipments wherever needed in the network. 

o The queue storage space at each lock is unlimited for both directions. 
o Components of lockage process are simplified with a single service time 

distribution. 
• Optimization Model 

o The implementation (i.e., mainly construction) costs of projects are 
independent and additive. Whenever the ccumulative budget reaches the 
required construction cost for an additional, that project implementation is 
completed. 

o The budget is accumulated continuously as a function of time over the 
planning horizon. 

o The implementation of one project does not yet depend on the existence of 
the other projects. 

o The increase in lock capacity is indicated by the increased service rate (i.e., 
the inverse of service time). 

o A capacity is specified without affecting the number of chambers. 
o Lock capacity increases instantaneously after a lock improvement project 

is completed. After the project selection and sequencing are completed the 
project completion times can be uniquely determined. 

o There is one and only one improvement project at each lock location. No 
other alternatives are yet considered. 

o Budget constraints are always binding, i.e., there are never enough funds 
for all justifiable projects. 

 

Model Features 
 
SIMOPT is built with an inland waterway simulation model (Wang 2001) and a GA 
search algorithm. The simulation model incorporated in SIMOPT is designed to be a 
portable, data-driven model which can be applied on various waterway tree networks 
without re-coding the computation kernel. The optimization model employed in SIMOPT 
is deliberated with genetic algorithm, especially in solving sequencing problems.  
 
SIMOPT has a simple user interface. It allows users to specify required input files, which 
should be prepared ahead of running the SIMOPT model, and some other basic 
parameters such as the duration of the simulation period and the number of simulation 
replications needed to reduce the variance of the combined stochastic processes of 
simulation and optimization.  
 
Demonstrations of SIMOPT have exhibited the following features of this model: 
 

• Run Simulation 
o Performance of designed simulation scenario 
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• Project Evaluation 
o Evaluation of single projects 
o Evaluation of any given project sequence 
o Evaluation of lock control policies 

• Run Optimization 
o Optimization of project selection, sequencing and scheduling 

 

Network Examples 
 
Two network examples are provided with the latest version of SIMOPT. One is a simple, 
artificial test network (shown in Figure 6) and the other is a section of the actual US 
inland waterway network, the Upper Mississippi River (shown in Figure 7). The latter  
case is shown in greater detail in Wang’s dissertation (referred as “Case Study”). 

Test Network 1 (Artificial Network) 
 
This artificial network includes 5 ports (5 × 5 O/Ds) and 7 locks (3 two-chamber locks 
and 4 one-chamber locks). Improvement projects are applied at locks to expand capacity, 
by doubling capacities at single-chamber locks and expanding the capacities at two-
chamber locks. This artificial network is used to show how the network configuration 
inputs are prepared for the simulation module, which was developed with a data-driven 
approach. Details of the development of simulation model development are shown in 
Wang and Schonfeld’s 2003 TRB paper. 

Port

Two-Chamber Lock

One-Chamber Lock

Junction

 
Figure 6 SIMTOP Test Network – Artificial Network 

 

Test Network 2 (Upper Mississippi River) 
 
The simulation model in SIMOPT is capable of simulating a large waterway network, 
such as Upper Mississippi River area and Ohio River area with 17 major ports and 74 
locks. The distance between St. Louis and Cairo exceeds 100 miles, which is enough to 
eliminate lock interdependence. Therefore, the inland waterway network analyzed here is 
the Upper Mississippi region area which contains 3 rivers, 7 ports and 36 locks. 
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Figure 7 SIMOPT Test Network – Network of Upper Mississippi River 

 

Model Testing 
 
After examining the delays at current locks, locks #15, #16, #17, #18, #19, #20, #21, #22, 
#24, #25 are selected for improvement projects which double their capacities. Running 
the simulation model on such a large network, even once, takes considerable time. 
Besides, hundreds or thousands of evaluations might be necessary to approach the 
optimal or near optimal solution while using genetic algorithms. Therefore, due to limited 
computational resources, the simulation is accelerated (within 1.5 years) with high traffic 
growth and high budget rates. 
 

Simulation Inputs 
• O/D matrices 
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• Matrices of demand growth rates 
• Matrices of demand elasticity 
• Tow size distribution 
• Speed distribution 
• Service time distribution 
• Link distances 
• Number of chambers 
• Chamber bias and lockage cuts 
• Control alternatives (F  FCFS, S  SPF) 

o Case 1.1: network-wide FCFS 
o Case 1.2: network-wide FCFS w/ selected SPF 

 
Table 1 Lock Control Settings for SIMOPT 

 

Lock Control Lock Control Lock Control Lock Control 
Up. Falls F #8 F #17 F #27 F 
Lo. Falls F #9 F #18 F LaGrange F 

#1 F #10 F #19 F Peoria F 
#2 F #11 F #20 F Starved Rock F 
#3 F #12 F #21 F Marseilles F 
#4 F #13 F / S #22 F / S Dresden Island F 
#5 F #14 F #24 F / S Brandon Road F 
#6 F #15 F #25 F / S Lockport F 
#7 F #16 F / S #26 F T. J. O’Brien F 

Optimization Inputs 
• Lock expansion plan 

 
Table 2 Lock Expansion Plans for SIMOPT 

Lock 
Site Capacity Cost 

(106)

Current Lock 
Delays 

(barge-hrs) 

Project Benefit 
(system total 

delay savings) 
#13 2.0 2.5 3742780 1086416 
#16 2.0 1.6 2501000 731052 
#17 2.0 2.7 2120250 551020 
#18 2.0 2.1 1987090 508484 
#19 2.0 1.7 1765470 408528 
#20 2.0 2.4 1733540 263210 
#21 2.0 2.1 1795420 337892 
#22 2.0 1.9 2098990 432320 
#24 2.0 2.3 2940650 679700 
#25 2.0 2.2 5130450 946204 

 
• Genetic parameters 
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Table 3 Genetic Parameters for SIMOPT 

GA Parameters Value 
Population Size 20 
Mutation Rate 0.2 
Crossover Rate 0.5 
Selection Elite 
Sampling Mechanism Stochastic 
Selection Probability Ranking Scheme 
Sampling Space Large w/ replacement 

Termination 5 generations w/o 
improvement 

 

Optimized Results 
 

Intuitively, if locks are considered individually, the construction projects would 
be implemented according to the rank of their delay severities, that is 
#25 #13 #24 #16 #17 #22 #18 #19 #21 #20. Based on two sets of control 
alternatives designed in previous input tables, the optimized solutions for sequencing and 
scheduling 10 projects are shown in the following table. 

As can be seen in the left side of table, if only physical construction projects are 
considered and all locks are operated with FCFS, i.e., without changes in lock control, 
then #22 #16 #25 #13 #18 #24 #19 #21 #20 #17 is the optimized project 
sequence. It differs from the one ranked according to individual lock delay severities. 
Also, the rank-based project sequence results in a total delay cost of $1.467×109. The 
optimized sequence found does have a lower system delay costs of $1.448×109. Further, 
SPF control improves efficiency and reduces the delays. Therefore, when combining 
improvement projects with more efficient control at selected locks, the network 
bottleneck will shift and lock congestion levels will change. The possibility of operating 
SPF only at selected locks leads to the project sequence shown on the right side of table. 
Those locks with better control alternatives can have their improvement projects 
implemented later. The resulting total delay cost is 1.344×109. 
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Table 4 Test Results for SIMOPT 
Network-Wide FCFS Selected SPF Project 

Sequence Lock 
Location 

Completion Time 
(Year) 

Lock 
Location 

Completion Time 
(Year) 

1 # 22 0.13 # 13 0.17 
2 # 16 0.23 # 16 0.27 
3 # 25 0.38 # 18 0.41 
4 # 13 0.55 # 19 0.53 
5 # 18 0.69 # 17 0.71 
6 # 24 0.84 # 20 0.87 
7 # 19 0.95 # 22 0.99 
8 # 21 1.09 # 25 1.14 
9 # 20 1.25 # 21 1.28 
10 

 

# 17 1.43 # 24 1.43 
 

The above table illustrates the effect of the optimized project implementation 
schedule on delay costs and on the volume to capacity (V/C) ratio at the remaining 
critical bottleneck in the network. Figure 8 indicate the accumulated total delay costs with 
and without projects over the assumed planning horizon of 1.5 years. The dashed lines 
indicate the implementation times of the 10 projects. At the end of year 1.5, these 
improvement projects can save almost 25% of total system delay costs. Figure 8 also 
presents the change of V/C ratio at the network’s bottleneck. Along the time axis, the 
bottleneck physically shifts over the network as additional projects are implemented. In 
the current demand model, the elasticity of demand with respect to travel time is 
determined by a sensitivity coefficient which is specified based on judgment and 
experience with local conditions. With any positive demand elasticity, lock 
improvements that reduce delays will attract additional traffic, thus changing the V/C 
ratio in the network. 

 
Figure 8 Cost and Network Analysis of SIMOPT Project Implementation 
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The upper part of Figure 9 compares the results of capital improvement projects 

and operational control alternatives. As can be seen, the curves intersect around year 0.6. 
That is, before year 0.6, SPF control can save more delays than capital improvements. 
The implementation of the first four projects might not be necessary if an effective 
control alternative is considered. Without projects, the construction costs are also 
avoided. Finally, the lower part of Figure 9 displays the total delay savings from 
implementing projects without and with SPF controls. It shows that the system 
performance can be further improved if more effective lock control and lock expansions 
are considered jointly. 

 
Figure 9 Benefits of Projects with Control Considerations in SIMOPT 
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NaSS  
 
The Navigation Economics Technologies (NETS) research program is initiated by the US 
Army Corps of Engineers Institute for Water Resources (IWR) to organize the latest 
research findings to develop economic tools and techniques for navigation needs.  One of 

23 



4/17/2006 

the efforts is to improve the analysis models directed primarily at inland navigation, for 
which the new NaSS (Navigation System Simulation) model is being developed. 
 
Based on the experience with previously developed USACE models and applications, 
including the basin-level models WAM, ORNIM, and NavSym; and single lock model 
representations WAM, LCLM and LockSym, the system network model is a discrete 
event simulation model that generates commodity shipments between ports, moves 
vessels through reaches and locks, considers flow conservation, takes into account re-
fleeting activities at some designated locations, and incorporates shippers response to 
scheduled or unscheduled closures.  For the investment optimization, the SIMOPT model 
developed at the University of Maryland is used to explore genetic algorithm 
optimization in conjunction with a network simulation model. Such a model is flexible 
and adaptable to a wide variety of inland navigation problems addressed by the Corps. 
 

Model Extensions for NaSS 
The NaSS design document describes the model’s characteristics including the network 
model, investment optimization model as well as auxiliary tools of data analyzer, result 
analyzer and data pre-processor. As discussed above, the investment optimization model 
can be fully separated from system network model in the development stage. After that, 
the integration of the simulation and optimization models should be a low-risk and 
straightforward problem. That is, while the optimization models are developed, they may 
be integrated with either the SIMOPT testbed or with an even simpler evaluation function.  
 
Several needed enhancements to the GA optimization capabilities and simulation 
complexities were of interest. Thus, the original model assumptions in SIMOPT are 
reviewed and possible modifications are studied. 
 
In developing future simulation model, the following features should be considered: 

• Consider demand response to network improvements during simulation  
• Consider demand diversion due to construction and service interruption 
•  Update system characteristics during the simulation 
• Change lockage behavior if a parallel chamber is added 
• Change lock control policies as congestion increases 

 
A more detailed improvement plan could also include: 

• Project construction times 
• Capacity reductions during construction 
• Number and size of chambers 
• Maintenance cost 
• Failure rates and durations before and after projects. 

 
Some refined optimization features could be included: 

• Add constraints (e.g., precedence, mutual exclusivity, available budgets, regional 
distribution of projects, complementarities among projects) 
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• Improve search algorithm by creating “smart” operators 
• Develop prescreening rules to avoid unpromising solutions 
• Avoid re-simulating previous solutions 
• Develop parallel processing capabilities 

 

Enhanced Work on Genetic Algorithms 
 
According to the Scope of Work drafted for GA enhancement (see Appendix), several 
tasks are included in the current phase, including considering project construction time 
and its relevant effects, involving multiple alternatives at the same project location, and 
increasing the search efficiency in GA optimization process. The task of “optimal timing 
for projects absent budget constraints” is automatically bound with other tasks. 
 

Project Construction Time 
 
One of the basic assumptions in SIMOPT in solving the project selection / sequencing / 
scheduling problem is “lock capacity increases instantaneously after a lock improvement 
project is selected and completed”. There is no consideration of project construction time 
and any possible capacity reduction during the construction period. That is, the system 
increases lock capacity suddenly, whenever a project is implemented. Therefore, by 
reviewing the inputs given to the simulation model for project evaluation, the 
construction related information is simplified and added into data file of project 
information. As shown in Figure 10, in addition to project ID, project size (i.e., capacity 
expansion ratio) and project cost, two extra data items are included, namely construction 
duration and residual capacity ratio (Co. T and Res.). 

ID ID ID ID IDID ID

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost
.....

Time Time Time Time TimeTime Time.....

Co. T Co. T Co. T Co. T Co. TCo. T Co. T

Res. Res. Res. Res. Res.Res. Res.

 
Figure 10 Structure of Chromosome for Considering Project Construction Time 

 
An example is shown in the Figure 11. 3 lock improvement projects are for lock 1, 2, and 
3 to increase lock capacities from C1, C2, and C3 to C’1, C’2, and C’3, respectively. Figure 
11 (a) shows the lock capacity changes in original SIMOPT without considering 
construction time and capacity reduction. After considering construction time and 
capacity reduction during the construction, Figure 11 (b) shows that the project 
construction will decrease the capacities from C1, C2 and C3 to C*1, C*2, and C*3 during 
the construction periods of S1 to F1, S2 to F2, S3 to F3, respectively. After construction, the 
capacities are increased to the improvement levels of C’1, C’2, and C’3. 
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Capacity
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System Capacity

Lock 1 Capacity

Lock 2 Capacity

Lock 3 Capacity

S1 S2 S3

C1

C2

C3

C’1

C’2

C’3

C*3

 
(a) 
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(b) 

Figure 11 Capacity Changes during the Simulation 
 
Some questions worth considering include the following: 

• How will the optimization result (project sequencing) be affected if we consider 
the construction time and capacity reduction? 

• How will the demand react to the increasing delays due to project construction? 
Should a full equilibrium model, or partial equilibrium model, or elasticity model 
be applied? 

• How will the optimization result be affected if demand is or is not sensitive to the 
capacity and resulting delays? 

• How will the optimization results be affected in comparison with the rank of lock 
congestion level which might intuitively generate the schedule of lock 
improvement projects? 

 
In order to consider project construction time and capacity reduction in SIMOPT, some 
modifications in the simulation model are made. With the implementation schedule 
calculated from the budget flow and project costs, projects are chronologically introduced 
into the simulation program and implemented immediately whenever the cumulative 
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budgets reach the construction costs. In addition to the “start project” events in the 
original SIMOPT, “complete project” events are now added. 
 
Some system variables are updated while the above two projects events are invoked. 
When an event of starting a project is invoked, lock capacity is reduced to its blockage 
level and the service rate decreases proportionally. At the same time, the completion time 
for project construction is calculated to determine when an event of completing a project 
will be invoked. Similarly, when an event of completing a project is invoked, lock 
capacity is increased to its expansion level as well as decreased the service time 
proportionally. 
 
It is possible that the system might explode when a local capacity is reduced to zero or 
near zero during the construction time, if demand cannot respond to the level of service. 
In order to avoid infinite queues, an elastic demand model is involved during the 
simulation. That is, when an event of trip generation is invoked, the generation rate is 
updated based on the expected and real-time travel times. Let ijλ  denote current 
generation rate for a  pair,  denote the annual growth rate and denote the 
demand elasticity. If the expected travel time is  and real-time travel time is , the 

generation rate is updated as , where  is the clock time and 
 is the previous generation time. 

ji DO / ijr ijk

ijw ijz
ijpc k

ijij
tt

ijij wzr )/()1( ⋅+⋅ −λ ct

pt
 
If considering an alternate transportation mode, such as rail, to ease the possible traffic 
congestion due to the construction, full equilibrium or partial equilibrium models could 
be used. The shippers response to maintenance closures (i.e., capacity dropping to zero) 
when the railroads are the alternate mode to waterways has been modeled in Wang and 
Schonfeld’s 2006 TRB paper. Based on those concepts, the reaction of traffic demand to 
capacity reductions could be similarly treated with an equilibrium model.  
  

Project Multiplicity 
 
At any specific lock site, several expansion alternatives with discretely specified 
capacities may be considered. Two cases may arise for project multiplicity: only one 
project among those alternatives can be selected, or multiple alternatives could be 
selected but implemented at different times over the planning period. The first case is 
straightforward and project costs for different alternatives are independent. However, the 
project costs in the second case could be interdependent and revised based on the 
implementation sequence. That is, project cost might include the construction cost for 
building the new project and deconstruction cost for removing the old project at the same 
location. In the current phase, the first case is considered with at most one project being 
selected among the alternatives at each site. 
 
If there are mutually exclusive projects at the same location, i.e. if  only one can be 
selected, we may consider the inclusion of sizing decisions in the project scheduling 
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problem. While combining sizing and scheduling problem, the solution space of fully 
permutated sequences will be further enlarged through the inclusion of all project 
alternatives at each lock. That is, if there are N lock locations and ( i = 1,…, N) project 
alternatives for each lock, the total number of solution including all possible 
combinations and permutations would be 

im

∏
i

imN! . The project constraints must ensure 

that only one project at each location is selected among all available alternatives. Let  
be a binary variable. If , the project is selected; if 

iX
1=iX 0=iX , the project is not 

selected. If i denotes the project alternatives, then the project constraints for any location 
can be formulated as . 1≤∑

i
iX

 
In order to consider project multiplicity, the definition of chromosome used in SIMOPT 
should be redefined or modified. Different ways to define a chromosome could represent 
the information about project multiplicity. One possible way of encoding project size and 
schedule is having both decision variables in the same sequence (as shown in Figure 12). 
That is, a new representation of sequence contains both lock ID (1, 2, 3… etc) and project 
alternative (A, B, C… etc).  

Chromosome containing project alternative and lock sequence
B7 C4A1B0C B2 A36 36247 C10 AB ABBC

or
A4 B1C7B6A A3 B20 36247 A10 CB BAAB

Project Alternatives at specific lock
Lock ID

Proejcts A B
0

A B C
1

A
3

A B
2

A B
4

C A B
6 7

A B C

 
Figure 12 Paired Representation of Chromosome for Mutually Exclusive Projects 

 
However, with this paired representation, both mutation and crossover operators must be 
redeveloped to avoid illegitimacy in the reproduction process, which creates offspring 
with invalid sequences or unavailable project alternatives. For example, as shown in 
Figure 13, an original EM operator developed in SIMOPT yields unavailable project 
alternative (that is, (a) some alternative is not available at some lock sites), or invalid 
sequence (that is, (b) unreasonable numbering sequence).  

28 



4/17/2006 

B7 C4A1B0C B2 A36

Unavailable project alternatives
B7 C4A1B3C B2 A06

36247 C10 AB ABBC

Invalid sequence
36247 C1B AB A0BC

(a) (b)  
Figure 13 Illegitimacy Generated from Mutation Operator for Paired Representation 

 
Therefore, a new EM operator should be able to swap the lock ID and project alternative 
together (as a pair) at the same time (as shown in Figure 14 (a)), or perform swapping 
twice for lock ID and project alternative with matching positions (as shown in Figure 14 
(b)). It should also be able to randomize the project alternatives after any swapping (as 
shown in (c) and (d)). In other words, the genetic operators should be redesigned to be 
able to characterize legitimately the priority of project locations with corresponding 
project alternatives. 

B7 C4A1B0C B2 A36 36247 C10 AB ABBC

(a) (b)

B7 C4A1A3C B2 A06

B7 C4A1A3C B2 B06

(c)

06247 C13 AA ABBC

06247 C13 AA BBBC

(d)

or

 
Figure 14 Possible Mutation Operator for Paired Representation 

 
The other way of encoding these two variables together is keeping the same path 
representation used in SIMOPT but using project ID instead of lock ID in a sequence (as 
shown in Figure 15). With the original representation, the proposed GA operators in 
SIMOPT could still be applied on the mutation and crossover processes without any 
modification to produce the offspring. However, if considering only one alternative for 
each location, the sequences with full list projects are not the feasible solutions, in the 
sense that all alternatives will be implemented at different times (as shown in the middle 
part of the figure). Therefore, it is necessary to have a “refining” scheme embedded to 
create the feasible solutions for simulation evaluation. That is, instead of sequences with 
full lists of projects, a shorter sequence whose list of projects has only one project at each 
lock should be formed after the “refining” procedure (as shown in the lower part of 
Figure 15).  
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Chromosome containing all project alternatives

81371116 32

Project Alternatives at specific lock
Lock ID

Project ID 1 2
0

3 4 5
1

8
3

6 7
2

9 10
4

11 12 13
6 7

14 15 16

Chromosome containing one project alternative at each lock location

71849 1613

11515316 214 86101 137

154109 1613 1171423 18

4

12 5

9

6

12

 
Figure 15 Path Representation of Chromosome for Mutually Exclusive Projects 

 
The simplest way is to keep only one project at any lock and discarding the other projects 
at the same lock locations in any full-list sequence. As shown in Figure 16, whenever the 
first project alternative at one lock is selected, a “refining” technique will automatically 
discard the other project alternatives at the same lock. As noted, all the mutation and 
crossover operators are applied on the full-list chromosomes, not the refined 
chromosomes. Before starting any simulation evaluation, chromosome refining processes 
are performed on all produced offspring from any mutation or crossover operations.  

81371116 32

11515316 214 98101 137 4 12

Select 2
(Discard 1)

Select 3
(Discard 4, 5)

Select 7
(Discard 6)

Select 13
(Discard 12)

Select 8

 Select 16
(Discard 14, 15)

6

Select 11
(Discard 9, 10)

 
Figure 16 Proposed Refining Technique to Create Feasible Solutions for Mutually Exclusive Projects 
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In order to allow project multiplicity in SIMOPT, some modifications in the GA 
optimization model are made. In SIMOPT, the structure of the designed chromosome is 
shown in Figure 17. Each project initially includes information about project ID, project 
size and project cost. The project ID automatically indicates the project location. The 
implementation time for each project will be determined after the project sequence is 
generated and bounded with budget flow. 
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Figure 17 Structure of Chromosome Defined in SIMOPT 
 
More information should be added into the chromosome definition when multiple 
alternatives are available at some lock locations. That is, in addition to project ID, lock 
ID should be provided (as shown in Figure 18, denoted as P.ID and L.ID). In this newly 
defined chromosome with multiple project alternatives per lock, lock ID is not unique 
anymore for each project but project ID is. 

P.ID P.ID P.ID P.ID P.IDP.ID P.ID

L.ID L.ID L.ID L.ID L.IDL.ID L.ID

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost

Size

Cost
.....

Time Time Time Time TimeTime Time.....

Co. T Co. T Co. T Co. T Co. TCo. T Co. T

Res. Res. Res. Res. Res.Res. Res.

 
Figure 18 Modified Structure of Chromosome for Mutually Exclusive Projects 

 

Time Efficiency 
 
It is conceivable that some sequences that have been evaluated in previous generations 
are created again in the current generation. It is expected that combining the two 
stochastic processes of simulation and GA optimization will be time consuming. A 
significant time is required for evaluating each generated project sequence through 
simulation; especially numbers of replication is involved for variance reduction. 
Therefore, in order to reduce optimization search time, avoidance of duplicate simulation 
runs is considered. 
 
A genetic approach is usually based on a memoryless evolutionary procedure. In contrast, 
another meta-heuristic approach called tabu search is designed with an adaptive memory 
which records solutions visited during the search. With this feature, the implementation 
of procedures can search the solution space economically and effectively. Thus inspired 
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by the idea provided in tabu search, the proposed GA is further modified as memorized 
evolutionary model. That is, the evaluated solutions in GA optimization are memorized in 
each generation. With the intension of avoiding duplications, it is a key step to search 
through memorized solutions before performing the simulation. 
 
In order to avoid re-evaluating the same project sequences, each evaluated sequence and 
its evaluation results are recorded in a deque (short for “double-ended-queue”) data 
structure. If the newly generated sequence appears in the recorded solution pool, its 
evaluation result is directly assigned from memory rather than re-obtained simulation. 
Later, all newly generated sequences are pre-screened to identify those previously 
simulated ones before any time-consuming simulation is performed. Compared with the 
time for multiple simulation runs, it would be still worthwhile to spend time on checking 
throughout the recorded sequences. 
 
In a deque data structure, the length of list is unlimited. It is also not necessary to declare 
a bulky memory space as for array data structure before starting the optimization process. 
Since a deque structure provides rapid insertions and deletions at its front or back of the 
structure, it is easy to add any newly evaluated solution onto the end of list. It also allows 
direct access to any stored element. Whenever an evaluated sequence has been found as 
the same sequence with the one being going to be evaluated, the stored fitness value can 
be directly assigned to the fitness result instead of duplicating simulation runs.  
 
Thus, as shown in Figure 19, the evaluated sequences are stored in a deque and each 
element contains information about project sequences and their fitness values. During 
pre-screening, a newly generated sequence is compared with the recorded sequences, a 
“solution list”. As long as an exact sequence is found in the solution list, the recorded 
fitness value is directly assigned to the new generated sequence and the simulation 
evaluation is skipped. If no exact match is found among previously evaluated sequences, 
the new sequence is simulated and added into the solution list with its newly evaluated 
fitness value.  

Fitness FitnessFitness Fitness

Compare

Compare

CompareCom
pa

re

 
Figure 19 Deque Data Structure 

 
The comparison between two sequences is performed project by project. The sequence 
comparing process is stopped whenever any of project elements is found different (as 
shown in Figure 20). 
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Fitness Compare
8 2 7 5 9 28 7 5 4

 
Figure 20 Sequence Comparison 

 
It is noted that the comparison of sequences is straightforward if there are no mutually 
exclusive projects, since the full list of projects is the same as the full list of lock 
locations. However, with mutually exclusive projects, the comparison results could be 
different. Two types of sequences are created when considering mutually exclusive 
projects. Full sequences of project alternatives are generated from the offspring 
production process. Partial sequences with only one project per lock are “refined” for 
evaluation by simulation. To avoid duplication in the evaluation process, we should 
compare the refined partial sequences, rather than the full sequences. That is, as shown in 
Figure 21, after the “refining” process (performed in the case of mutually exclusive 
projects), different full sequences of project alternatives could become the same partial 
sequence with only one project per lock. 

81371116 32

11515316 214 98101 137 4 126

11314116 152 12695 410 7 813

41131416 215 98101 137 12 56

Refining

 
Figure 21 Refined Sequence 

 
Therefore, in order to save simulation time even efficiently, it is better to have a solution 
list recording the “refined” partial sequences rather than the “original” full sequences. 
 

Model Test (Enhanced SIMOPT) 

Test Network 
 
The test network used in SIMOPT demonstration is used here for testing any enhanced 
GA techniques proposed in this phase (as shown in Figure 22). There are 3 rivers, 5 ports, 
and 7 locks (4 single-chamber locks and 3 double-chamber locks). Locks are numbered 
with ID 0, 1, 2, 3, 4, 6, 7. Lock #5 and #8 are dummy locks (refer to the “SIMOPT” 
presentation, July 2005). Not all locks require improvement projects, but all improvement 
projects are at real locks. 
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0 1 2 3 4

6

7

 
 

Figure 22 Test Network for SIMOPT Extension 
 

Input Parameters 
 
Input Statistics 

• O/D matrix with trip generation rates 
• Tow size distributions 
• Chamber service time distributions 
• Speed distributions 
 

Lock Operation 
• FIFO control 
• Towboats priority (tow w/o barge) 
• Lockage cuts  

o Main: always 1 cut  
o Auxiliary: 2 cuts for tows with more than 9 barges 

• Chamber assignment 
• Chamber bias (main chamber is preferred for tows with more than 7 barges) 

 
Demand 

• Annual growth rates for each O/D pair 
• Elasticity for each OD pair 

 
Base Case Run 

• Lock congestion level (from highest V/C to lowest V/C): 7 1 6 0 2 4 3 
• Average O/D travel time 

 
System Parameters 

• Simulation parameters 
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Table 5 Simulation Parameters in SIMOPT Extension 
Time Value 450 $ / barge-minute 
Budget Rate 150 × 106 $ / year 
Demand Growth Rate 2.0% per year 
Replications 10 
Simulation Period 2.5 years 
Warm-Up Period 1 year 

 
• Optimization parameters 
 

Table 6 Optimization Parameters in SIMOPT Extension 
Population Size 50 
Selection Probability Ranking of fitness value 
Sampling Mechanism Elitist selection & stochastic sampling 
Mutation Rate 0.07 
Crossover Rate 0.3 
Replacement Replace worst parents 
Termination 20 generations w/o improvement 

 

Testing Results 
 
All the test results are presented with three cases obtained with the recently modified 
SIMOPT: (1) Considering construction times, (2) Considering mutually exclusive 
projects, and (3) Avoiding duplicated simulation runs. In those test cases, it is assumed 
that the project construction starts at the time when required cost is accumulated. The 
current objective function is set to minimize the total cost which includes system total 
delay cost (barge-minute) and project construction cost. All the cases are run on a 
Pentium III machine with 3.6 GHz CPU and 1GB memory. 

Case 1: Considering Construction Times 
 
In this case, only one project is considered at each single lock. Project information is 
detailed in blockage duration for the construction and capacity reduction ratio during the 
construction time as well as project size (capacity expansion ratio) and project cost. Two 
scenarios are proposed. One (case 1.1) serves as the base case in which construction time 
is neglected, as in the original SIMOPT. (The implicit assumption is that construction is 
instantaneous.) The other (case 1.2) considers construction time and its relevant effects 
such as capacity reduction and demand response. 
 
Inputs of Lock Improvement Projects 

• Project ID 
• Lock ID 
• Project size – capacity expansion ratio 
• Project cost ($ M) 
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• Project duration – construction time(year) 
• Project blockage – residual capacity ratio 

 
Table 7 Project Information for Case 1.1 (Baseline without Construction Times) 

Project ID Lock ID Size Cost 
1 7 2.0 17 
2 1 2.0 16 
3 6 2.0 23 
4 0 2.0 19 
5 2 1.1 22 
6 4 1.3 21 
7 3 1.1 25 

 
Table 8 Project Information for Case 1.2 (Considering Construction Times) 

Project ID Lock ID Size Cost Duration Blockage 
1 7 2.0 17 0.17 0.2 
2 1 2.0 16 0.09 0.5 
3 6 2.0 23 0.12 1.0 
4 0 2.0 19 0.11 0.5 
5 2 1.1 22 0.03 0.8 
6 4 1.3 21 0.09 0.2 
7 3 1.1 25 0.04 0.5 

 
 
Optimized Project Sequences and Implementation Schedules 
 
Since there are 7 projects to be sequenced in Table 7 or Table 8, the solution space is 7! = 
5,040. For testing purposes, this is not a huge number. The optimized project sequences 
and their implementation schedules are shown in Table 9 and Table 10. The optimized 
results are quite different for the two scenarios. While considering construction time and 
capacity reduction, the total cost increases considerably due to increasing traffic delays 
during the construction period. That is, inclusion of construction time and the capacity 
reduction during construction in the simulation is important and significantly affects the 
optimization results. 
 

Table 9 Optimized Results for Case 1 (Considering Construction Times) 

1,225,828,5201 6 7 2 4 3 0YES

319,707,2261 0 7 6 2 4 3NO

Total CostOptimized Sequence
(Lock Location)

Construction Time /  
Capacity Reduction

1,225,828,5201 6 7 2 4 3 0YES

319,707,2261 0 7 6 2 4 3NO

Total CostOptimized Sequence
(Lock Location)

Construction Time /  
Capacity Reduction
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Table 10 Additional Optimized Results for Case 1 (Considering Construction Times) 

OpenBuildOpenBuild

0.95

0.79

0.65

0.5

0.35

0.23

0.11

1.060.95040.9537

Computation time = 23158 sec
Number of generations = 58

Computation time = 10792 sec
Number of generations = 21

0.870.83370.7946

0.750.66460.6525

0.550.52250.563

0.540.37710.3571

0.380.26630.2304

0.20.11120.1112

Time Table (Yr)LockProject No.Time Table (Yr)LockProject No.

w/ Construction Time and Capacity 
Reduction

w/o Construction Time and Capacity 
Reduction

OpenBuildOpenBuild

0.95

0.79

0.65

0.5

0.35

0.23

0.11

1.060.95040.9537

Computation time = 23158 sec
Number of generations = 58

Computation time = 10792 sec
Number of generations = 21

0.870.83370.7946

0.750.66460.6525

0.550.52250.563

0.540.37710.3571

0.380.26630.2304

0.20.11120.1112

Time Table (Yr)LockProject No.Time Table (Yr)LockProject No.

w/ Construction Time and Capacity 
Reduction

w/o Construction Time and Capacity 
Reduction

 
 
 
GA Search Performance 
 
Based on case 1.2, Figure 23 shows as an example of GA search performance. The best 
sequence in each generation is always saved, so the solution can never get worse over 
successive generations. However, the rate of improvement decreases over successive 
generations until further improvement become very unlikely. From the first generation to 
the termination, there is an approximately 60% improvement in the optimized solutions. 
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Figure 23 GA Search Performance 

 

Case 2: Considering Mutually Exclusive Projects 
 
In this case, multiple projects are considered at some lock locations. However, at most 
one of the alternative projects for each location will be selected in any implementation 
sequence. Construction time and capacity reduction during the construction period are 
considered. Similarly, two scenarios (case 2.1 and case 2.2) are proposed for case 2: with 
or without considering mutually exclusive projects. Case 2.1 is actually the previous case 
1.2. 
 
Inputs of Lock Improvement Projects 

• Project ID 
• Lock ID 
• Project size – capacity expansion ratio 
• Project cost ($ M) 
• Project duration – construction time(year) 
• Project blockage – residual capacity ratio 
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Table 11 Project Information for Case 2  (Considering Mutually Exclusive Projects) 
Project ID Lock ID Size Cost Duration Blockage 

1 7 1.5 10 0.10 1.0 
2 7 1.8 13 0.13 0.8 
3 7 2.0 17 0.17 0.2 
4 1 1.5 10 0.05 1.0 
5 1 2.0 16 0.09 0.5 
6 6 2.0 23 0.12 1.0 
7 0 1.5 15 0.10 1.0 
8 0 2.0 19 0.11 0.5 
9 2 1.1 22 0.03 0.8 
10 4 1.1 15 0.01 1.0 
11 4 1.2 17 0.05 0.5 
12 4 1.3 21 0.09 0.2 
13 3 1.1 25 0.04 0.5 

 
 
Optimized Project Sequences and Implementation Scheduled 
 
Here, there are 13 projects: 3 alternatives at lock #7, 2 alternatives at lock #1, 1 
alternative at lock #6, 2 alternatives at lock #0, 2 alternatives at lock #2, 3 alternatives at 
lock #4, and 1 alternative at lock #3. The solution space is 7! × 3! × 2! × 2! × 3! = 
725,760. That is, much less than 13! = 6,227,020,800. The optimized project sequences 
and implementation schedules are shown in following tables. 
 

Table 12 Optimized Results for Case 2 (Considering Mutually Exclusive Projects) 

YES

YES

Construction Time  
/ Capacity 
Reduction

344,908,1557 0 1 6 4 3 2YES

1,225,828,5201 6 7 2 4 3 0NO

Total CostOptimized Sequence
(Lock Location)

Mutually 
Exclusive 
Projects

YES

YES

Construction Time  
/ Capacity 
Reduction

344,908,1557 0 1 6 4 3 2YES

1,225,828,5201 6 7 2 4 3 0NO

Total CostOptimized Sequence
(Lock Location)

Mutually 
Exclusive 
Projects
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Table 13 Additional Optimized Results for Case 2 (Considering Mutually Exclusive Projects) 

OpenBuildOpenBuild

1.06

0.87

0.75

0.55

0.54

0.38

0.2

1.261.23290.9504

Computation time =  41766 sec
Number of generations = 24

Computation time = 23158 sec
Number of generations = 58

1.131.093130.8337

0.930.924100.6646

0.940.82660.5225

0.610.56140.3771

0.470.37070.2663

0.170.07710.1112

Time Table (Yr)LockProject No.Time Table (Yr)LockProject No.

w/ Mutually Exclusive Projectsw/o Mutually Exclusive Projects

OpenBuildOpenBuild

1.06

0.87

0.75

0.55

0.54

0.38

0.2

1.261.23290.9504

Computation time =  41766 sec
Number of generations = 24

Computation time = 23158 sec
Number of generations = 58

1.131.093130.8337

0.930.924100.6646

0.940.82660.5225

0.610.56140.3771

0.470.37070.2663

0.170.07710.1112

Time Table (Yr)LockProject No.Time Table (Yr)LockProject No.

w/ Mutually Exclusive Projectsw/o Mutually Exclusive Projects

 
 

Case 3: Avoiding Duplicated Simulation Runs 
 
In this case, newly produced sequences are prescreened to avoid re-simulating previous 
ones. Therefore, two scenarios are proposed to compare the differences of required 
genetic search times. 
 
The first scenario serves as base case without any pre-screening action for the evaluated 
solutions before the simulation. The second scenario considers the pre-screening process 
to avoid duplicated simulation runs, but may require some search time in the pre-
screening process. In order to perform the pre-screening process, the search comparison 
is conducted after a full list of projects is refined as a feasible sequence, in which only 
one project is selected at each lock. Instead of comparing sequences whenever a full list 
of project alternatives is generated, this will eliminate all the possible simulation 
duplications, since different full lists of sequences might result in the same project lists 
after the “refining” procedure. 
 
Computation Times for Optimization Search  
 
Most inputs in this case are the same as in the second case. In order to generate more 
varieties, the population size is increased to 100 in this case. Search time for pre-
screening process is expected to increase when the number of recorded solutions 
increases. After generations in GA’s, the number of recorded solutions could be so large 
that considerable time is spent searching through the whole list for sequence comparison. 
The additional “solution search process” might reduce the time-saving effect from the 

40 



4/17/2006 

pre-screening step. However, in a simulation-based optimization model, the pre-screening 
time seems negligible compared to the time for multiple simulation replications. The 
optimized solution found in this case is shown as project sequence 
4 7 1 6 10 13 9 with total cost of $342,086,655. This result differs slightly 
from the result in case 2.2 due to some changes in input parameters, such as the 
population size of 100. 
 
Comparative results for GA search time are shown in Table 14. With pre-screening, the 
GA search time decreases by approximately 20%. If the number of generations increases, 
time savings from pre-screening should increase. 
 

Table 14 Results for Case 3 (Avoiding Duplicated Simulation Runs) 
Construction 

Time / Capacity 
Reduction 

Mutually 
Exclusive 

Project 

Pre-screening 
Solutions 

# of 
Generations 

GA Search 
Time (sec) 

YES YES NO 21 129641 
YES YES YES (refined list) 21 104604 

 

Verification of GA Optimization Model 
 
In such a complex combinatorial problem, it is not easy to find the exact optimal solution; 
at least no existing methods can guarantee finding the global minimum. Verifying the 
goodness of the solution optimized by the proposed algorithm is also difficult. Therefore, 
in order to statistically test the effectiveness of the algorithm, an experiment is designed 
to evaluate 20,000 randomly generated solutions to the problem with a sampling process. 
 
Using case 2.2 with mutually exclusive projects as an example, the solution space 
contains 725,760 (= 7! × 3! × 2! × 2! × 3!) solutions. 20,000 solutions cover 
approximately 3% of the solution space. From those observations, the best fitness value 
in this sample is 0.34521×109, while the worst one is 9.8882 ×109. The sample mean is 
2.3769 ×109 and the standard deviation is 1.7497 ×109. 
 
Since the sample is randomly generated, the fitted distribution should approximate the 
actual distribution of fitness values for all possible solutions in the search space. The 
distribution for those 20,000 sampled solutions is shown in Figure 24 with different 
histogram scalars, namely 20 and 100. From Figure 24(a), there is one higher peak 
around value of 1.0 × 109 and one lower peak around value of 5.5 × 109. From Figure 24 
(b), two higher peaks around the values of 0.5 × 109 and 1.2 × 109 can be observed. 
Based on the plotted histograms, the best fitting distribution with uneven bell shape might 
be the gamma distribution or the lognormal distribution. 
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Figure 24 Histograms of Sampled Solutions 

 
Figure 25 shows those 20,000 sample solutions fitted with gamma distribution, gamma (α, 
β), in which α and β are the shape and scale parameters, and lognormal distribution, LN 
(μ, σ2), in which μ and σ2 are sample mean variance. The values of α and β for the fitted 
gamma distribution are 2.0757 and 1.1451×109, and the values of μ and σ2 for fitted 
lognormal distribution are 21.3292 and 0.7307, respectively. As can be seen, there is a 
large “spike” close to , which is covered better by the lognormal distribution. 0=x
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Figure 25 Fitted Gamma and Lognormal Distributions 

 
Compared with the optimized solutions found in case 2 (best fitness value = 0.3449×109) 
and case 3 (best fitness value = 0.3420×109), the best solution with fitness value of 
0.34521×109 is approximately 0.1% higher (i.e. worse) than the GA search results. That 
is, the optimized solution found in proposed GA search still 0.1% less than the best 
solution found from the random search experiment. Those optimized solutions, though 
not necessarily optimal, are still very good when compared with other random solutions 
in the solution space. That practically shows the reliability and validity of the proposed 
search algorithm. 
 

Conclusions and Future Work 
 

Summary and Conclusions 
 
Optimization based on evaluating objective functions with simulation is becoming 
feasible, but the computation time is a crucial factor. Since the optimization method can 
be fully separated from the simulation model, the development efforts for these two 
processes can proceed concurrently.  Thus, using the SIMOPT testbed, enhancements of 
the simulation-based optimization models are developed and tested.  
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When considering project construction time and capacity reduction during the 
construction, the “events” of starting and completing the projects are defined to update 
the system capacity during the simulation. The simulation model also considers the 
possibility of queue “explosion” if lock capacity decreases significantly during 
construction periods. Traffic demand is thus designed to be sensitive to the service level 
and adjusted automatically during the trip generation. For the optimization model, extra 
project information related to construction is added into the GA chromosome. Results 
show how the construction time and associated capacity reduction significantly affect the 
optimized sequence. 
 
When considering mutually exclusive projects, the GA chromosome definition should be 
modified. In order to apply the same genetic operators developed in SIMOPT, the newly 
defined chromosome contains a full list of mutually exclusive projects. However, 
solutions with full lists of projects are not feasible when we allow at most one project per 
lock. Therefore, a “refining” technique is applied to create feasible solutions with lists of 
projects having at most one project per lock. The modified SIMOPT is able to solve the 
problem of sequencing and scheduling mutually exclusive projects. 
 
To reduce running time in a simulation-based optimization model, any newly evaluated 
solution is recorded in a “solution list”. Whenever a new sequence is produced from 
mutation or crossover operations, a pre-screening process is first performed to check 
throughout the solution list. If that solution is also found in the list, its simulation is 
omitted and its fitness value is directly assigned from the saved records. By avoiding 
duplicated simulation runs, the test case shows that the optimization search time is 
reduced by approximately 20% over 21 generations. Even larger percentage reductions 
are expected if the number of generations is increased. 
 
At the end, a verification process is conducted to show the validity and reliability of the 
proposed GA search algorithm. Random solutions are generated from a sampling process 
and fitted with gamma or lognormal distributions. Compared with the those generated 
solutions, the optimized results found by the proposed GA search algorithm are still 0.1% 
better than the minimum value found from the random search experiment. 
 

Future Work 
 
A key component of NaSS is the investment optimization module, which is currently 
tested with Genetic Algorithm (GA) optimization.  This investment optimization module 
is used to identify project modifications that are worthy of implementation, their order of 
implementation, and optimal implementation timing. There are good reasons for choosing 
GA instead of other optimization algorithms. First, GA’s provide great flexibility for 
creative ideas, for example in the selection method, mutation/crossover rules, problem 
specific operators, and immigration and replacement between generations.  Secondly, 
GA’s are naturally suitable for running on parallel processors. With parallel computing, 
the optimization time could be significantly reduced. Also, the GA’s developed for 
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network-level optimization also seem adaptable for optimizing lock-level enhancement 
projects. 
 
Additional ways of enhancing the GA optimization algorithms are available. The scope 
of work for the next phase includes additional development of genetic algorithms, and 
their application to project selection, sequencing and scheduling. 
 
In GA’s, search performance could possibly be affected by the mix of different genetic 
operators. To exploit the problem structure, some “smart” operators might be created 
specifically for waterway project scheduling. Some prescreening rules could also be 
developed to avoid simulating solutions that are unpromising or violate constraints. 
 
Since the optimization model can be developed separately from the network simulation 
model, it is possible to integrate them with a simple “evaluator” to save the time in 
running simulation-based optimization. The simple evaluator could be any approximate 
simulator or even an algebraic function. 
 
In the problem of project selection, sequencing and scheduling, additional complexities 
may arise, such as multiple alternatives at the same location which may be implemented 
at different times, project precedence relations, further budget constraints (e.g. regional 
limits, new construction vs. maintenance), budgets related to taxes on traffic levels found 
during simulations, and tradeoffs between construction times and costs. Such 
complexities could all be addressed in future model developments. 
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Appendix 

GA Phase 1 Scope of Work 
 
In the Design Document development phase, a “testbed” simulation-optimization model 
was used to demonstrate the feasibility of using simulation and GA optimization to 
determine optimal solutions to problems requiring simulation as the objective function 
evaluation tool.  During that demonstration, several needed enhancements to the GA 
optimization capabilities were identified.  The following tasks describe those activities 
which are related to enhancing the capabilities of the GA optimization model. 
 
Task 1 Genetic algorithm 

 
Task 2  Evaluation / Simulation model 
 

2.1   Store results and prescreen alternatives to avoid repeated simulation near 
previous searches 
 

Task 3  Project selection / sequencing / scheduling 
 
3.1 Include construction time during simulation 
 
3.2 Consider capacity reduction during construction period 
 
3.3 Consider multiple alternatives at the same location / mutually exclusive 
projects 

 
3.4 Consider optimal timing for projects absent budget constraints 
 

Task 4   Continued participation on NaSS team 
 

4.1 Continue to participate in teleconferences and face-to-face meetings.  At the 
time of scope development it is anticipated that bi-weekly teleconferences will 
continue throughout the period of this scope.  In addition, at least one face-to-face 
meeting between team members is anticipated. 
 
4.2 Specific assignments.  It is anticipated issues and activities will arise during 
the period of this scope for which CEE-UMD will be tasked.  If the level of effort 
involved requires significant additional time and resources, this scope may be 
modified to provide additional funds and time to CEE-UMD.     

46 



4/17/2006 

References 
 
Wang, S. “Simulation and Optimization of Interdependent Waterway Improvement 
Projects”, PhD Dissertation, University of Maryland, 2001. 
 
Wang, S. and Schonfeld, P. “Development of Waterway Simulation Model”, Annual 
TRB Meeting, Jan. 2002 (02-2194 on Conference CD-ROM). 
 
Wang, S. and Schonfeld, P. “Scheduling Interdependent Waterway Projects through 
Simulation and Genetic Optimization,” Journal of Waterway, Port, Coastal and Ocean 
Engineering, ASCE, Vol.131, No. 3, May/June 2005, pp. 89-97. 
 
Wang, S. and Schonfeld, P. “SIMOPT”, presented in July 2005 at Fort Belvoir, VA. 
 
Wang, S. and Schonfeld, P. “Modeling Shipper Response to Scheduled Waterway Lock 
Closures”, Annual TRB Meeting Jan. 2006 (06-1833 on CD-ROM). 
 
Wang, S. and Schonfeld, P., “Genetic Algorithms for Selecting and Scheduling 
Waterway Projects”, presented at NETS SYMPOSIUM, Salt Lake City, Jan. 2006. 
 

47 


	 Abstract
	Introduction
	Optimization
	Simulation-Based Optimization Model
	Genetic Algorithms
	Characteristics
	Design of GAs
	Genetic Operators
	Crossover Operators
	Mutation Operators


	Project Scheduling Problems
	Problems of Scheduling Waterway Improvement Projects
	Inland Waterway Simulation Model
	Integrated Waterway Simulation and Optimization

	SIMOPT
	SIMOPT Model Assumptions
	Model Features
	Network Examples
	Test Network 1 (Artificial Network)
	Test Network 2 (Upper Mississippi River)

	Model Testing
	Simulation Inputs
	Optimization Inputs
	Optimized Results


	NaSS 
	Model Extensions for NaSS
	Enhanced Work on Genetic Algorithms
	Project Construction Time
	Project Multiplicity
	Time Efficiency

	Model Test (Enhanced SIMOPT)
	Test Network
	Input Parameters
	Testing Results
	Case 1: Considering Construction Times
	Case 2: Considering Mutually Exclusive Projects
	Case 3: Avoiding Duplicated Simulation Runs


	Verification of GA Optimization Model

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	 Appendix
	GA Phase 1 Scope of Work

	 References

